Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 307(2): 442-456, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37644754

RESUMO

Rats' whisking motion and objects' palpation produce tactile signals sensed by mechanoreceptors at the vibrissal follicles. Rats adjust their whisking patterns to target information type, flow, and resolution, adapting to their behavioral needs and the changing environment. This coordination requires control over the activity of the mystacial pad's intrinsic and extrinsic muscles. Studies have relied on muscle recording and stimulation techniques to describe the roles of individual muscles. However, these methods lack the resolution to isolate the mystacial pad's small and compactly arranged muscles. Thus, we propose functional anatomy as a complementary approach for studying the individual and coordinated effects of the mystacial pad muscles on vibrissae movements. Our functional analysis addresses the kinematic measurements of whisking motion patterns recorded in freely exploring rats. Combined with anatomical descriptions of muscles and fascia elements of the mystacial pad in situ, we found: (1) the contributions of individual mystacial pad muscles to the different whisking motion patterns; (2) active touch by microvibrissae, and its underlying mechanism; and (3) dynamic position changes of the vibrissae pivot point, as determined by the movements of the corium and subcapsular fibrous mat. Finally, we hypothesize that each of the rat mystacial pad muscles is specialized for a particular function in a way that matches the architecture of the fascial structures. Consistent with biotensegrity principles, the muscles and fascia form a network of structural support and continuous tension that determine the arrangement and motion of the embedded individual follicles.


Assuntos
Movimento , Músculos , Ratos , Animais , Movimento/fisiologia , Tato/fisiologia , Movimento (Física) , Vibrissas/fisiologia
2.
Commun Biol ; 6(1): 562, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237075

RESUMO

Sensory information is coded in space and in time. The organization of neuronal activity in space maintains straightforward relationships with the spatial organization of the perceived environment. In contrast, the temporal organization of neuronal activity is not trivially related to external features due to sensor motion. Still, the temporal organization shares similar principles across sensory modalities. Likewise, thalamocortical circuits exhibit common features across senses. Focusing on touch, vision, and audition, we review their shared coding principles and suggest that thalamocortical systems include circuits that allow analogous recoding mechanisms in all three senses. These thalamocortical circuits constitute oscillations-based phase-locked loops, that translate temporally-coded sensory information to rate-coded cortical signals, signals that can integrate information across sensory and motor modalities. The loop also allows predictive locking to the onset of future modulations of the sensory signal. The paper thus suggests a theoretical framework in which a common thalamocortical mechanism implements temporal demodulation across senses.


Assuntos
Neurônios , Percepção do Tato , Neurônios/fisiologia , Tato , Percepção Auditiva/fisiologia , Audição
3.
Sci Rep ; 12(1): 2922, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190603

RESUMO

Hand movements are essential for tactile perception of objects. However, the specific functions served by active touch strategies, and their dependence on physiological parameters, are unclear and understudied. Focusing on planar shape perception, we tracked at high resolution the hands of 11 participants during shape recognition task. Two dominant hand movement strategies were identified: contour following and scanning. Contour following movements were either tangential to the contour or oscillating perpendicular to it. Scanning movements crossed between distant parts of the shapes' contour. Both strategies exhibited non-uniform coverage of the shapes' contours. Idiosyncratic movement patterns were specific to the sensed object. In a second experiment, we have measured the participants' spatial and temporal tactile thresholds. Significant portions of the variations in hand speed and in oscillation patterns could be explained by the idiosyncratic thresholds. Using data-driven simulations, we show how specific strategy choices may affect receptors activation. These results suggest that motion strategies of active touch adapt to both the sensed object and to the perceiver's physiological parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...